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Motivation

▪ Problem: Models for Speech Deepfake Detection (SDD) often fail to generalize across unseen domains.
▪ Gap: Lack of a theoretical framework to explain or predict generalization.
▪ Proposal: Use sharpness as a proxy to understand and improve generalization.

Key Questions

▪ Can sharpness serve as a theoretical indicator for generalization in SDD?
▪ Can Sharpness-Aware Minimization (SAM)* enhance generalization performance across diverse datasets?

Sharpness & Domain Mismatch

▪ Sharpness: Measures model sensitivity to 
parameter perturbations.

▪ Sharpness increases under unseen 
conditions: languages, spoofing attacks, 
channel effects, (but not speaker variability)

▪ Intuitively, lower sharpness -> less sensitivity 
to data -> better generalization

Sharpness-Aware Minimization

▪ Objective: original loss + regularization

Experiments and Analysis

▪ Experimental Setup: Train set: ASVspoof 2019 LA; Test set: 8  datasets; Models: AASIST | W2V+Linear or 
AASIST; Training: Cross-entropy loss, RawBoost augmentation, Adam or SAM optimizer

▪ Generalization with SAM: Consistent EER reduction across most models & datasets; Most gains seen in 
mismatched conditions (21LA, ITW, ADD, WF); SSL + SAM outperforms all other combinations.

▪ Sharpness  Generalization (Correlation Analysis):
▪ Strongest in mismatched domains: ITW, 21LA, ADD
▪ Moderate in FOR, WF, SC; Weakest in in-domain (19LA)

Conclusion

▪ Sharpness increases under domain shifts, correlates with performance → useful 
indicator of generalization.

▪ SAM reduces sharpness → more robust models and better generalization.

Loss Landscape of model trained with Adam (L) or SAM (R)

sharpness-aware component 

▪ Simultaneously minimize the loss value and its 
sharpness, achieving flatter loss landscapes.

Equal Error Rate (EER) % (↓) of different models trained with Adam or SAM 
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