From Sharpness to Better Generalization for **Speech Deepfake Detection**

Wen Huang¹, Xuechen Liu², Xin Wang², Junichi Yamagishi², Yanmin Qian¹

¹AudioCC Lab, Shanghai Jiao Tong University, China

²National Institute of Informatics, Japan

Motivation

- Problem: Models for Speech Deepfake Detection (SDD) often fail to generalize across unseen domains.
- Gap: Lack of a theoretical framework to explain or predict generalization.
- Proposal: Use sharpness as a proxy to understand and improve generalization.

Key Questions

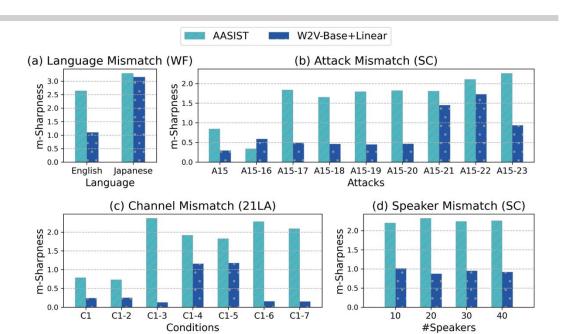
- Can sharpness serve as a theoretical indicator for generalization in SDD?
- Can Sharpness-Aware Minimization (SAM)* enhance generalization performance across diverse datasets?

Sharpness & Domain Mismatch

Sharpness: Measures model sensitivity to parameter perturbations.

$$s(w,S) riangleq \max_{\|\epsilon\|_2 \leq
ho} rac{1}{|S|} \sum_{i:(x_i,y_i) \in S} (\ell_i(w+\epsilon) - \ell_i(w))$$

- Sharpness increases under unseen conditions: languages, spoofing attacks, channel effects, (but not speaker variability)
- Intuitively, lower sharpness -> less sensitivity to data -> **better generalization**



Sharpness-Aware Minimization

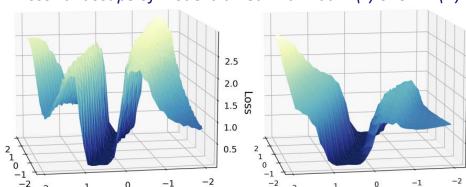
■ **Objective**: original loss + regularization

$$L_S(w) + \lambda ||w||_2^2 + \left[\max_{\|\epsilon\|_2 \le \rho} L_S(w + \epsilon) - L_S(w) \right]$$

sharpness-aware component

 Simultaneously minimize the loss value and its sharpness, achieving flatter loss landscapes.

Loss Landscape of model trained with Adam (L) or SAM (R)



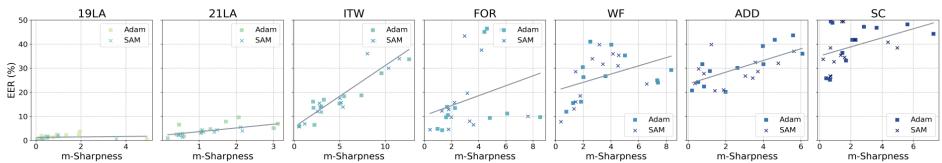
Experiments and Analysis

Experimental Setup: Train set: ASVspoof 2019 LA; Test set: 8 datasets; Models: AASIST | W2V+Linear or AASIST; *Training:* Cross-entropy loss, RawBoost augmentation, Adam or SAM optimizer

Faual Frror Rate (FFR) % (\, \) of different models trained with Adam or SAM

Model	Optimizer	19LA	21LA	21DF	ITW	FOR	WF	ADD	SC
AASIST	Adam	1.96 ± 0.61	8.10 ± 1.33	21.92 ± 2.61	34.31 ± 6.73	45.85 ± 0.68	38.68 ± 3.02	40.48 ± 3.98	45.27 ± 3.01
	SAM	$\textbf{1.71} \pm \textbf{0.55}$	$\textbf{4.62} \pm \textbf{0.81}$	19.58 ± 1.18	$\textbf{33.34} \pm \textbf{3.07}$	33.51 ± 12.37	33.85 ± 2.15	33.84 ± 2.80	43.98 ± 4.71
W2V-Base+Linear	Adam	1.78 ± 0.51	5.82 ± 1.01	13.10 ± 3.00	16.85 ± 2.74	12.01 ± 2.07	30.34 ± 6.71	30.47 ± 9.03	34.98 ± 1.66
	SAM	$\textbf{1.21} \pm \textbf{0.34}$	3.39 ± 0.89	11.93 ± 0.55	$\textbf{13.66} \pm \textbf{1.82}$	9.57 \pm 2.78	36.95 ± 7.40	24.29 ± 3.57	34.87 ± 2.97
W2V-Base+AASIST	Adam	2.81 ± 0.79	4.78 ± 0.57	10.37 ± 1.19	18.29 ± 0.47	11.11 ± 1.73	27.79 ± 3.29	36.22 ± 5.28	45.89 ± 3.56
	SAM	$\textbf{1.32} \pm \textbf{0.38}$	$\textbf{3.12} \pm \textbf{0.39}$	$\textbf{10.00} \pm \textbf{0.76}$	16.21 ± 2.02	$\textbf{7.92} \pm \textbf{1.37}$	34.29 ± 2.88	28.48 ± 3.73	34.83 ± 0.46
W2V-Large+Linear	Adam	1.37 ± 0.40	3.11 ± 0.64	6.79 ± 0.38	14.96 ± 1.41	13.24 ± 2.44	23.97 ± 7.30	30.97 ± 9.91	48.35 ± 1.40
	SAM	0.88 ± 0.10	$\textbf{2.58} \pm \textbf{0.37}$	$\textbf{6.37} \pm \textbf{0.30}$	$\textbf{12.22} \pm \textbf{1.41}$	14.65 ± 1.79	16.69 ± 1.59	37.31 ± 6.68	42.89 ± 5.73
W2V-Large+AASIST	Adam	1.22 ± 0.60	4.53 ± 0.99	7.17 ± 0.17	16.36 ± 1.80	11.58 ± 1.81	27.89 ± 2.76	33.60 ± 3.40	39.62 ± 4.50
	SAM	$\textbf{1.04} \pm \textbf{0.47}$	3.60 ± 0.16	6.82 ± 0.32	15.46 ± 2.09	$\textbf{10.02} \pm \textbf{0.82}$	25.12 ± 1.47	31.41 ± 3.28	39.67 ± 5.14
W2V-XLSR+Linear	Adam	0.34 ± 0.06	1.32 ± 0.35	4.27 ± 0.43	6.00 ± 0.51	4.55 ± 1.19	9.87 ± 3.24	22.85 ± 2.78	25.82 ± 1.89
	SAM	0.20 ± 0.05	1.87 ± 0.39	3.38 ± 0.47	5.99 ± 0.80	$\textbf{3.69} \pm \textbf{0.90}$	$\textbf{7.66} \pm \textbf{1.24}$	21.71 ± 2.08	25.65 ± 2.74
W2V-XLSR+AASIST	Adam	0.34 ± 0.13	1.85 ± 0.25	3.61 ± 0.32	6.89 ± 1.19	$\textbf{4.56} \pm \textbf{0.72}$	16.92 ± 7.36	19.67 ± 1.67	27.50 ± 1.98
	SAM	0.25 ± 0.12	$\textbf{1.71} \pm \textbf{0.27}$	3.44 ± 0.54	$\textbf{6.34} \pm \textbf{0.62}$	5.18 ± 1.48	14.36 ± 4.74	21.36 ± 0.59	29.93 ± 3.30

Generalization with SAM: Consistent EER reduction across most models & datasets; Most gains seen in *mismatched* conditions (21LA, ITW, ADD, WF); *SSL + SAM* outperforms all other combinations.



- Strongest in mismatched domains: ITW, 21LA, ADD
- Moderate in FOR, WF, SC; Weakest in in-domain (19LA)
- **21LA FOR** WF SC Metric **19LA ITW ADD PCC** 0.13 0.65 0.89 0.30 0.40 0.65 0.43 0.40 **SRCC** 0.53 0.77 0.87 0.52 0.62 0.49 0.45 0.36 **KTAU** 0.63 0.32 0.34 0.34

Conclusion

- Sharpness increases under domain shifts, correlates with performance → useful indicator of generalization.
- SAM reduces sharpness → more robust models and better generalization.

