From Sharpness to Better Generalization for **Speech Deepfake Detection** Wen Huang¹, Xuechen Liu², Xin Wang², Junichi Yamagishi², Yanmin Qian¹ ¹AudioCC Lab, Shanghai Jiao Tong University, China ²National Institute of Informatics, Japan #### **Motivation** - Problem: Models for Speech Deepfake Detection (SDD) often fail to generalize across unseen domains. - Gap: Lack of a theoretical framework to explain or predict generalization. - Proposal: Use sharpness as a proxy to understand and improve generalization. #### **Key Questions** - Can sharpness serve as a theoretical indicator for generalization in SDD? - Can Sharpness-Aware Minimization (SAM)* enhance generalization performance across diverse datasets? #### **Sharpness & Domain Mismatch** Sharpness: Measures model sensitivity to parameter perturbations. $$s(w,S) riangleq \max_{\|\epsilon\|_2 \leq ho} rac{1}{|S|} \sum_{i:(x_i,y_i) \in S} (\ell_i(w+\epsilon) - \ell_i(w))$$ - Sharpness increases under unseen conditions: languages, spoofing attacks, channel effects, (but not speaker variability) - Intuitively, lower sharpness -> less sensitivity to data -> **better generalization** #### **Sharpness-Aware Minimization** ■ **Objective**: original loss + regularization $$L_S(w) + \lambda ||w||_2^2 + \left[\max_{\|\epsilon\|_2 \le \rho} L_S(w + \epsilon) - L_S(w) \right]$$ sharpness-aware component Simultaneously minimize the loss value and its sharpness, achieving flatter loss landscapes. # Loss Landscape of model trained with Adam (L) or SAM (R) ### **Experiments and Analysis** Experimental Setup: Train set: ASVspoof 2019 LA; Test set: 8 datasets; Models: AASIST | W2V+Linear or AASIST; *Training:* Cross-entropy loss, RawBoost augmentation, Adam or SAM optimizer Faual Frror Rate (FFR) % (\, \) of different models trained with Adam or SAM | Model | Optimizer | 19LA | 21LA | 21DF | ITW | FOR | WF | ADD | SC | |------------------|-----------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------|------------------| | AASIST | Adam | 1.96 ± 0.61 | 8.10 ± 1.33 | 21.92 ± 2.61 | 34.31 ± 6.73 | 45.85 ± 0.68 | 38.68 ± 3.02 | 40.48 ± 3.98 | 45.27 ± 3.01 | | | SAM | $\textbf{1.71} \pm \textbf{0.55}$ | $\textbf{4.62} \pm \textbf{0.81}$ | 19.58 ± 1.18 | $\textbf{33.34} \pm \textbf{3.07}$ | 33.51 ± 12.37 | 33.85 ± 2.15 | 33.84 ± 2.80 | 43.98 ± 4.71 | | W2V-Base+Linear | Adam | 1.78 ± 0.51 | 5.82 ± 1.01 | 13.10 ± 3.00 | 16.85 ± 2.74 | 12.01 ± 2.07 | 30.34 ± 6.71 | 30.47 ± 9.03 | 34.98 ± 1.66 | | | SAM | $\textbf{1.21} \pm \textbf{0.34}$ | 3.39 ± 0.89 | 11.93 ± 0.55 | $\textbf{13.66} \pm \textbf{1.82}$ | 9.57 \pm 2.78 | 36.95 ± 7.40 | 24.29 ± 3.57 | 34.87 ± 2.97 | | W2V-Base+AASIST | Adam | 2.81 ± 0.79 | 4.78 ± 0.57 | 10.37 ± 1.19 | 18.29 ± 0.47 | 11.11 ± 1.73 | 27.79 ± 3.29 | 36.22 ± 5.28 | 45.89 ± 3.56 | | | SAM | $\textbf{1.32} \pm \textbf{0.38}$ | $\textbf{3.12} \pm \textbf{0.39}$ | $\textbf{10.00} \pm \textbf{0.76}$ | 16.21 ± 2.02 | $\textbf{7.92} \pm \textbf{1.37}$ | 34.29 ± 2.88 | 28.48 ± 3.73 | 34.83 ± 0.46 | | W2V-Large+Linear | Adam | 1.37 ± 0.40 | 3.11 ± 0.64 | 6.79 ± 0.38 | 14.96 ± 1.41 | 13.24 ± 2.44 | 23.97 ± 7.30 | 30.97 ± 9.91 | 48.35 ± 1.40 | | | SAM | 0.88 ± 0.10 | $\textbf{2.58} \pm \textbf{0.37}$ | $\textbf{6.37} \pm \textbf{0.30}$ | $\textbf{12.22} \pm \textbf{1.41}$ | 14.65 ± 1.79 | 16.69 ± 1.59 | 37.31 ± 6.68 | 42.89 ± 5.73 | | W2V-Large+AASIST | Adam | 1.22 ± 0.60 | 4.53 ± 0.99 | 7.17 ± 0.17 | 16.36 ± 1.80 | 11.58 ± 1.81 | 27.89 ± 2.76 | 33.60 ± 3.40 | 39.62 ± 4.50 | | | SAM | $\textbf{1.04} \pm \textbf{0.47}$ | 3.60 ± 0.16 | 6.82 ± 0.32 | 15.46 ± 2.09 | $\textbf{10.02} \pm \textbf{0.82}$ | 25.12 ± 1.47 | 31.41 ± 3.28 | 39.67 ± 5.14 | | W2V-XLSR+Linear | Adam | 0.34 ± 0.06 | 1.32 ± 0.35 | 4.27 ± 0.43 | 6.00 ± 0.51 | 4.55 ± 1.19 | 9.87 ± 3.24 | 22.85 ± 2.78 | 25.82 ± 1.89 | | | SAM | 0.20 ± 0.05 | 1.87 ± 0.39 | 3.38 ± 0.47 | 5.99 ± 0.80 | $\textbf{3.69} \pm \textbf{0.90}$ | $\textbf{7.66} \pm \textbf{1.24}$ | 21.71 ± 2.08 | 25.65 ± 2.74 | | W2V-XLSR+AASIST | Adam | 0.34 ± 0.13 | 1.85 ± 0.25 | 3.61 ± 0.32 | 6.89 ± 1.19 | $\textbf{4.56} \pm \textbf{0.72}$ | 16.92 ± 7.36 | 19.67 ± 1.67 | 27.50 ± 1.98 | | | SAM | 0.25 ± 0.12 | $\textbf{1.71} \pm \textbf{0.27}$ | 3.44 ± 0.54 | $\textbf{6.34} \pm \textbf{0.62}$ | 5.18 ± 1.48 | 14.36 ± 4.74 | 21.36 ± 0.59 | 29.93 ± 3.30 | Generalization with SAM: Consistent EER reduction across most models & datasets; Most gains seen in *mismatched* conditions (21LA, ITW, ADD, WF); *SSL + SAM* outperforms all other combinations. - Strongest in mismatched domains: ITW, 21LA, ADD - Moderate in FOR, WF, SC; Weakest in in-domain (19LA) - **21LA FOR** WF SC Metric **19LA ITW ADD PCC** 0.13 0.65 0.89 0.30 0.40 0.65 0.43 0.40 **SRCC** 0.53 0.77 0.87 0.52 0.62 0.49 0.45 0.36 **KTAU** 0.63 0.32 0.34 0.34 #### **Conclusion** - Sharpness increases under domain shifts, correlates with performance → useful indicator of generalization. - SAM reduces sharpness → more robust models and better generalization.