

SecureSpeech: prompt-based speaker and content protection

Belinda Soh Hui Hui, Xiaoxiao Miao, Xin Wang (presenter, wangxin@nii.ac.jp)

Poster session: #2, 18 PaperID 49

Background: protection of private speaker information

Information in speech utterances

Linguistic: contents, prosody of timing, pitch, ...

Paralinguistic: emotion, ...

Biometric voiceprint, speaker ID Your voice is your identity as

This poster is only on protection of speaker identity

Usage of biometric information in speech

A Voice Deepfake Was Used To Scam A CEO Out Of \$243,000

How to protect biometric information in speech?

Similar idea to face de-identification

How good is the protection?

better protection = attacker gets a lower recognition rate

User: the protected speech is intelligible & natural

Protecting speaker biometric information by anonymization

- Conventional approach [1]
 - Similar to deep neural network (DNN) voice conversion
 - Users set parameters via trial-and-errors
 - Attacker can still link anonymized & original speakers

Proposed **SecureSpeech**

- Automatic speech recognition (ASR) + text-to-speech (TTS)
- User describes the voice using text prompt easier to use
- Not linked to original speaker identity better protection

Experiment configuration

- Content protection is off
- Evaluation dataset: SLUE-VoxPopuli [2]
 - #. English speakers: 161
 - #. utterances (in total): 3,729
- Attacker's ASV system (pre-trained)
 - Popular ECAPA-TDNN, on VoxCeleb2 [3]
 - (ignorant attacker in Voice Privacy Challenge [1])
- Proposed system (pre-trained modules)
 - ASR: wav2vec 2.0-large ft. on Librispeech 960 [4]
 - TTS: Parler-TTS [5]
 - Transformer decoder: 24 blocks
 - Speech decoder: neural codec DAC [6]
 - Speaker prompt: randomly combined from templates of gender, English accent, speaking rate...

Conclusions:

- The proposed system is effective against attackers using pre-trained ASV; easy to use (text prompt)
- Future work: stronger attacking model

Experiment result See other results in the paper

Is speaker ID protected from attacker?

	No protect	Proposed		
ASV rec. rate	100%	0%		
by attacker	the lower t	he better ↓		

Not surprising: Parler-TTS's training speakers are different from test speakers

Yes, no link to original speakers

Does the protected speech sound good?

	No protect	Proposed			
ASR error ↓	23%	16%			
MOS (squim)↑	4.48	4.01			

Yes, quality is not degraded severely

- Impact of text prompts?
 - Fix one attribute, randomize other attributes
 - Protection is equally good: 0% ASV rec. rate
 - Speaking "quickly" degrades quality

Attributes	Subcategories	ASR err.↓	MOS						
Gender	Female	14.85	4.10						
	Male	16.88	4.07						
Pitch	Low-pitched	13.25	4.12						
	Normal	14.10	4.25						
	High-pitched	16.01	4.05						
Speaking rate	Slowly	15.25	4.28						
	Normally	12.39	4.23						
	Quickly	15.55	3.91						

Μ.	Panariello et al.,	"The	VoicePrivacy	2022 (Challenge: I	Progress	and Perspect	ives in Voi	ice Anonyr	nisation," l	IEEE TASLF	, pp. 1–	14, 20)2
\sim	0 1 5 601		- I									104005	3 700	_

- [2] S. Shon et al., "SLUE: New Benchmark Tasks for Spoken Language Understanding Evaluation on Natural Speech," Proc. ICASSP, 7927–7931, 2022 [3] B. Desplanques et al, "ECAPA-TDNN: Emphasized channel attention, propagation and aggregation in TDNN based speaker verification," in Proc. Interspeech, 2020, pp. 3830–3834.
- [4] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: A framework for self-supervised learning of speech representations," in Proc. NIPS, 2020, pp. 12449–12460.
- [5] D. Lyth and S. King, "Natural language guidance of high-fidelity text-to-speech with synthetic annotations," Feb. 02, 2024, arXiv: arXiv:2402.01912.
- [6] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar, "High-fidelity audio compression with improved RVQgan," Proc. NIPS, vol. 36, 2024