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Background: protection of private speaker information
= |nformation in speech utterances = How to protect biometric information in speech?
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= Similar idea to face de-identification
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= Usage of biometric information in speech - How good is the protection? |
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& The Need

better protection = attacker gets a lower recognition rate
User: the protected speech is intelligible & natural
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Protecting speaker biometric information by anonymization
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= Conventional approach U]

= Similar to deep neural network (DNN) voice conversion
= Users set parameters via trial-and-errors

= Attacker can still link anonymized & original speakers
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Experiment configuration

= Content protection is off

= Evaluation dataset: SLUE-VoxPopuli ]
= #. English speakers: 161
= #. utterances (in total): 3,729

= Attacker’s ASV system (pre-trained)
= Popular ECAPA-TDNN, on VoxCeleb2 [3]
= (ignorant attacker in Voice Privacy Challenge [1])

= Proposed system (pre-trained modules)
= ASR: wav2vec 2.0-large ft. on Librispeech 960 !
= TTS: Parler-TTS [°]
= Transformer decoder: 24 blocks
= Speech decoder: neural codec DAC [6]

= Speaker prompt: randomly combined from templates
of gender, English accent, speaking rate...

Conclusions:

o The proposed system is effective against attackers
using pre-trained ASV; easy to use (text prompt)

o Future work: stronger attacking model

= Proposed SecureSpeech
= Automatic speech recognition (ASR) + text-to-speech (TTS)
= User describes the voice using text prompt — easier to use
= Not linked to original speaker identity — better protection

Mr. Obama’s address is Pennsylvania Avenue.

Speech ,| Name entity [ || Name entity

recognition recognition replacement
optional for content protection
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Text: Mr. John’s

Text-to-speech
address is Street A.
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EXperiment result ‘see other resuits in the paper
= |s speaker ID protected from attacker?
/\
No protect | Proposed _
ASV rec. rate | 100% -
Attacker's ASV decision threshold
by attacker the lower the better | (set on VoxCeleb test set)

= Not surprising: Parler-TTS’s training Yes, no link to
speakers are different from test speakers original speakers

= Does the protected speech sound good?

No protect | Proposed
ASR error I 23% 16% Yes, quality is not
degraded severely
MOS (squim) 1| 4.48 4.01

= |mpact of text prompts? Attributes | Subcategories | ASR err.| MOS1

. . Female 14.85 4.10
= Fix gne_attnt}mte, bt Gender |\ E— 07
randomize other atinbutes Low-pitched 13.25 4.12
= Protection is equally good: Pitch gorlllnal » 1410  [74.25
igh-pit 16.01  4.05
0% ASV rec. rate e
i . , Speakin Slowly 15.25 4.28
= Speaking “quickly peas s | Normally 12.39 | 4.23
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