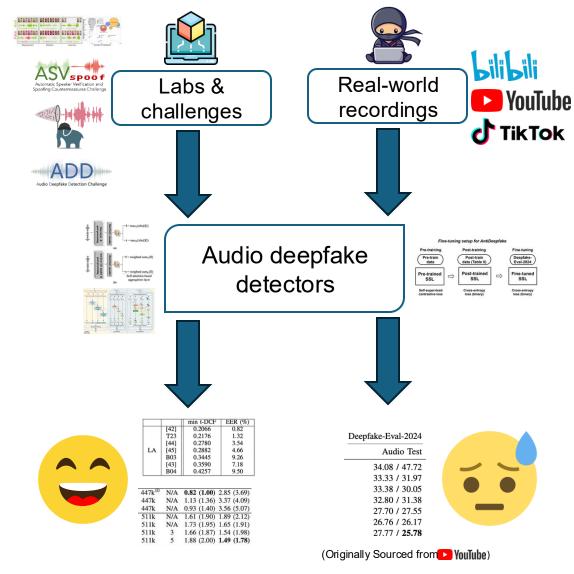
LENS-DF: Deepfake Detection and Temporal Localization for Long-Form Noisy Speech

Xuechen Liu, Wanying Ge, Xin Wang, Junichi Yamagishi IEEE IJCB 2025, Osaka, Japan 2025.09.10

Our Objective

- The boost of social media and video/streaming platforms post new challenges to audio Deepfake detection
- Reigning dataset and their resulting deepfake detectors are promising on lab conditions and even challenges
- But they are mostly trained and benchmarked on short, (largely) clean, and single speaker audio, and they fail on real-world audios with longer duration, noisy, and multi-speaker audio
- We propose LENS-DF, a data complication pipeline, and investigate the adaptability and robustness of audio Deepfake detectors against various realistic factors



^[1] T. Liu, D. Troung, R. Das, K. Lee, and H. Li, "Nes2Net: A Lightweight Nested Architecture for Foundation Model Driven Speech Anti-spoofing", arxiv:2504.05657, 2025.

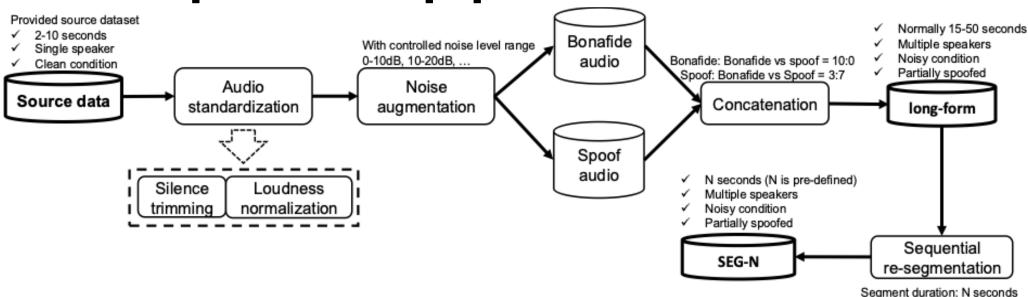
^[2] X. Liu et al, "ASVspoof 2021: Towards Spoofed and Deepfake Speech Detection in the Wild", IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023.

^[3] W. Ge, X. Wang, X. Liu, and J. Yamagishi, "Post-training for Deepfake Speech Detection", IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Honolulu, Hawaii, USA, 2025.

^[4] N. A. Chandra et al, "Deepfake-Eval-2024: A multi-modal in-the-wild benchmark of deepfakes circulated in 2024," arXiv:2503.02857, 2025.

^[5] H. Tak, et al, "Automatic Speaker Verification Spoofing and Deepfake Detection Using Wav2vec 2.0 and Data Augmentation", The Speaker Odyssey Workshop, 2022.

Data complication pipeline

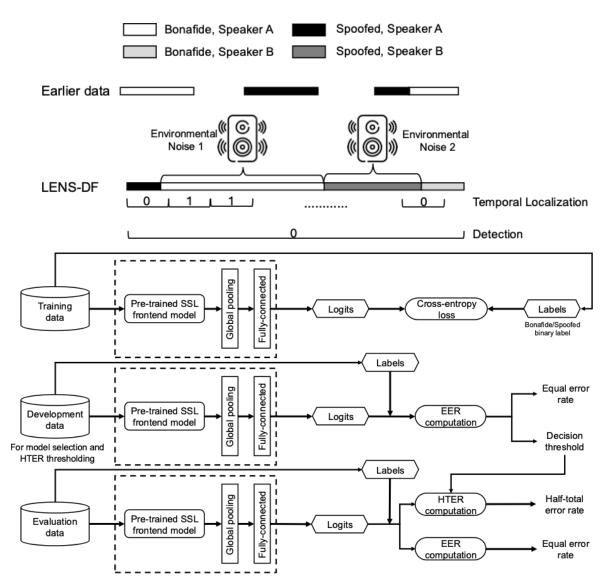


- ➤ Loudness normalization follows ITU P.56 standard, we acquire a toolkit called sv56 to implement this
- ➤ Noise augmentation is based on MUSAN, a noise dataset that contains various background noises (speech, noise, music), with controllable SNR range
- > Randomized concatenation followed by sequential re-segmentation (offset ignored)
- > We generates long-form and SEG-N variants for training/evaluation, detection/temporal localization

Detection & localization paradigm

- ➤ We follow the original protocol of **ASVspoof 2019 LA** to partition the data to training, development and evaluation
- ➤ Theoretically we can generate amount of data, while here we constraint the number for effective experimenting
- ➤ The training is done on normal audio deepfake detection paradigm, with pre-trained SSL frontend
- ➤ The development set is for model selection during training and deciding threshold to compute HTER during evaluation

	10:	ng	SEG-4		
Partition	Bonafide	Spoofed	Bonafide	Spoofed	
Train	2,580	22,800	17,857	129,805	
Dev	1,000	1,000	5,132	5,640	
Eval	1,000	1,000	4,984	5,663	



Experimental setup

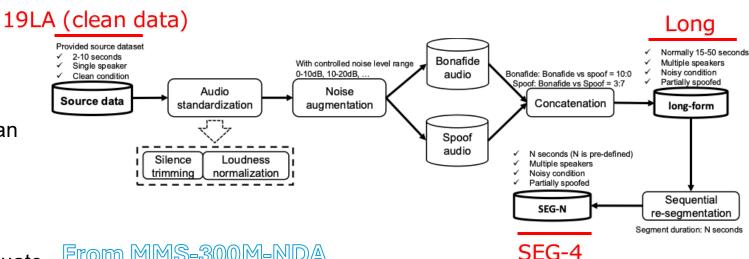
- Our audio Deepfake detector: AntiDeepfake, a largescale model zoo with various model resources and massive training
- ➤ The models started from **pre-trained** model from Hugging Face, and has been **post-trained** on ~74K hours of specialized data in total (~56K real, ~18K fake), combining more than 100 languages
- We found applying online data augmentation does not necessarily bring better performance, so we included both strategies (NDA: no RawBoost during post-training)
- ➤ We **fine-tune** the model using generated training partition of LENS-DF

We use MMS-300M-NDA & MMS-1B-NDA

<u>⊜</u> Model	Params	RawBoost	ADD2023	DEEP- VOICE	FakeOrReal	FakeOrReal- Norm	In-the- Wild	Deepfake-Eval- 2024
HuBERT-XL- NDA	964M	×	35.34	14.87	3.67	15.52	17.99	47.72
W2V-Small- NDA	95M	×	19.41	16.22	1.05	6.47	4.65	31.97
W2V-Large- NDA	317M	×	12.67	5.01	0.80	1.44	2.25	30.05
MMS-300M- NDA	317M	×	11.22	3.04	0.46	2.71	2.00	31.38
NDA	965M	×	9.46	2.27	0.89	1.10	1.86	27.55
XLS-R-1B- NDA	965M	×	6.58	2.96	3.16	10.91	1.36	26.17
XLS-R-2B- NDA	2.2B	×	6.84	2.63	1.18	1.73	1.31	25.78
HuBERT-XL	964M	✓	18.90	5.67	2.49	3.17	5.23	34.08
W2V-Small	95M	✓	13.02	9.80	21.94	17.85	4.24	33.33
W2V-Large	317M	✓	13.25	4.53	0.63	0.97	1.91	33.38
MMS-300M	317M	✓	7.93	2.27	1.35	5.92	2.90	32.80
MMS-1B	965M	✓	9.06	2.56	1.22	1.73	1.82	27.70
XLS-R-1B	965M	✓	5.39	2.52	5.74	12.14	1.35	26.76
XLS-R-2B	2.2B	✓	4.67	2.30	2.62	1.65	1.23	27.77

Results

- > Three evaluation conditions
 - > 19LA: Original 19LA evaluation data, clean
 - ➤ Long: Generated
 - > SEG-4: Generated, re-segmented
- > Conventional short, clean datasets are inadequate for detection on complex, realistic audio conditions. And using complex data for training helps
- Temporal localization requires further improvement even with enhanced training data
- > RawBoost is helpful, not that much though



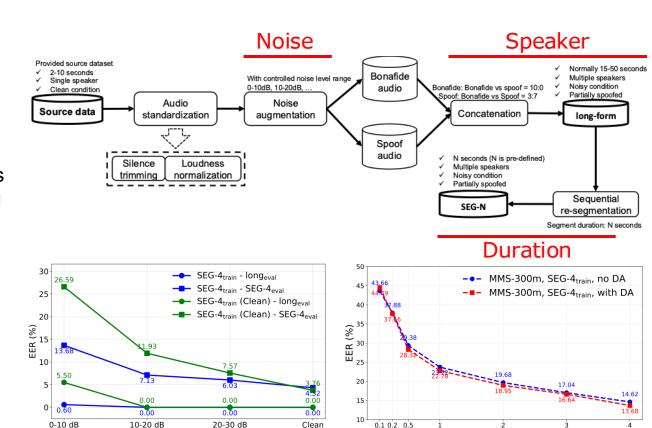
From MMS-300M-NDA

	Eval 🔁	Detection De		Detectio	n (Long)	Localization (SEG-4)	
	Training 💶	EER (%)	HTER (%)	EER (%)	HTER (%)	EER (%)	HTER (%)
	19LA	0.15	0.52	2.90	4.05	21.12	21.09
t	Long	7.45	5.32	1.30	1.40	17.81	17.26
	SEG-4	4.92	4.66	1.00	8.40	14.62	14.08
	SEG-4 (w/RawBoost)	8.31	6.92	0.60	3.80	13.68	13.52
	XLS-R-300M (earlier work)	0.19	0.94	15.70	17.60	30.41	27.30

pp. 6382-6386.

Results

- > We perform additional analysis on noise, duration and speaker presence by varying the pipeline
- ➤ Noise: As expected, noisy condition will create difficulties especially for localization, and that is invariant to training and evaluation variants
- Duration: Longer segments can improve temporal localization performance
- ➤ Speaker presence: Multiple vs. single speakers may cause short-cut learning so not doing well on multispeaker cases
- ➤ Those additional artefacts may have distracted the model decision process, making the model more towards classifying something else



	si	ngle	multi.		
Train / Eval cond.	Detection, Localization,		Detection,	Localization,	
	long _{eval}	$SEG-4_{eval}$	long _{eval}	$SEG-4_{eval}$	
single.	7.90	16.10	1.30	19.56	
multi.	11.10	17.37	0.60	13.68	

SNR level of evaluation data

Segment duration (s)

Summary

- We have proposed LENS-DF, a comprehensive data complication pipeline that real-world challenges in audio deepfake detection
- We acquire state-of-the-art audio Deepfake detectors and benchmark their adaptability against the more complicated data with more realistic distracting factors
- Training with LENS-DF improves detection performance under such more complicated conditions, including several factors that often occurs in the real-world data
- Future work will focus on more advanced model and training for temporal localization, and studying other speaker-related factors such as language

Thanks for Listening!

Special thanks to all other Yamagishi Lab members and Dr. Huy H. Nguyen for helping and advising

For more queries, please visit poster #29 or email xuecliu@nii.ac.jp

