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Our Objective

» The boost of social media and video/streaming
platforms post new challenges to audio Deepfake
detection

» Reigning dataset and their resulting deepfake detectors
are promising on lab conditions and even challenges

» But they are mostly trained and benchmarked on short,

(largely) clean, and single speaker audio, and they
fail on real-world audios with longer duration, noisy,
and multi-speaker audio

» We propose LENS-DF, a data complication pipeline,

and investigate the adaptability and robustness of audio

Deepfake detectors against various realistic factors
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Data complication pipeline

Provided source dataset
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Segment duration: N seconds
» Loudness normalization follows ITU P.56 standard, we acquire a toolkit called sv56 to implement this
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» Noise augmentation is based on MUSAN, a noise dataset that contains various background noises (speech, noise,
music), with controllable SNR range

» Randomized concatenation followed by sequential re-segmentation (offset ignored)

» We generates long-form and SEG-N variants for training/evaluation, detection/temporal localization

[1] X. Wang, J. Yamagishi, M. Todisco, H. Delgado, A. Nautsch, N. Evans, M. Sahidullah, V. Vestman, T. Kinnunen, K. A. Lee et al., “ASVspoof 2019: A large-scale public database of synthesized, converted
and replayed speech,” Computer Speech & Language, vol. 64, p. 101114, 2020.



Detection & localization paradigm

» We follow the original protocol of ASVspoof 2019 LA to
partition the data to training, development and evaluation

> Theoretically we can generate [&J amount of data, while
here we constraint the number for effective experimenting

» The training is done on normal audio deepfake detection
paradigm, with pre-trained SSL frontend

» The development set is for model selection during training
and deciding threshold to compute HTER during evaluation

long SEG-4
Partition | Bonafide Spoofed | Bonafide Spoofed
Train 2,580 22,800 17,857 129,805
Dev 1,000 1,000 5,132 5,640
Eval 1,000 1,000 4,984 5,663
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Experimental setu 3
P P AntiDeepfake] 740rous

» Our audio Deepfake detector: AntiDeepfake, a large-

scale model zoo with various model resources and This is "pre-training” We perform this
massive training in our study using LENS-DF
. Pre-training |——| Post-training »| Fine-tuning
» The models started from pre-trained model from

Hugging Face, and has been post-trained on ~74K
hours of specialized data in total (~56K real, ~18K fake), FakeorReal-  n-the-  Deepfake-Eval-

= Model Params RawBoost ADD2023 FakeOrReal

combining more than 100 languages o e
F 964M X 35.34 14.87 3.67 15.52 17.99 47.72
ﬁ}\\f—i&na\\- 95M X 19.41 16.22 1.05 6.47 4.65 31.97
» We found applying online data augmentation does not i 127 | sot jom | 1m 225 | 3008
necessarily bring better performance, so we included MASSOOU: sy x nz  sos ose 2 200 st
both strategies (NDA: no RawBoost during post-training) e T E— —
% 965M X 6.58 2.96 3.16 10.91 1.36 26.17
> We fine-tune the model using generated training ow MR e e aw
part|t|0n Of LENS—DF HuBERT-XL 964M v 18.90 5.67 2.49 3.17 5.23 34.08
W2V-Small 95M v 13.02 9.80 21.94 17.85 4.24 33.33
We use MMS_BOOM_NDA & W2V-Large  317M v 13.26 4.53 0.63 0.97 1.91 33.38
MMS 1B NDA MMS-300M 317M v 7.93 2.27 1.35 5.92 2.90 32.80
XLS-R-1B 965M v 5:39 2:52 5i74 1.2.14 1:35 26:76
XLS-R-2B 2.2B v 4.67 2.30 2.62 1.65 1.23 27.77

N I I [1]1 W. Ge, X. Wang, X. Liu, and J. Yamagishi, “Post-training for Deepfake Speech Detection”, IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Honolulu, Hawaii, USA, 2025.



Results

19LA (clean data)

Provided source dataset
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+  Single speaker

¥ Clean condition 0-10dB, 10-20dB, ...
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» 19LA: Original 19LA evaluation data, clean
> Long: Generated i{
» SEG-4: Generated, re-segmented
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» Conventional short, clean datasets are inadequate
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— Spoof: Bonafide vs Spoof = 3.7 ¥ Partially spoofed
Concatenation long-form
—_—
‘-..___________...J
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audio ¥ N seconds (M is pre-defined)
—— ¥ Multiple speakers
¥ Moisy condition
¥ Partially spoofed +*
Sequential
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—— Segment duration: N seconds

for detection on complex, realistic audio conditions. Eval [ Detection Detection (Long)  Localization (SEG-4)
And using complex data for training helps Training [l EER(%) HTER (%) EER (%) HTER (%) EER(%)  HTER (%)
19LA 0.15 0.52 2.90 4.05 21.12 21.09
» Temporal localization requires further improvement Long 7.45 5.32 1.30 1.40 17.81 17.26
even with enhanced training data
SEG-4 4.92 4.66 1.00 8.40 14.62 14.08
_ SEG-4
» RawBoost is helpful, not that much though (w/RawBoost) 8-31 6.92 0.60 3.80 13.68 13.52
XLS-R-300M
(earlier work) 0-19  0.94 15.70  17.60 30.41 27.30
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Results
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especially for localization, and that is invariant to training
and evaluation Variants Segment duration: N seconds
Duration
] ] i —@— SEG-4yain - 10NGeval : sl -e- MMS-300m, SEG-4rain, N0 DA
» Duration: Longer segments can improve temporal 25 R i s e ~8- MMS-300m, SEG-4ygi, with DA
localization performance _ 8 SEG-duan (Clean) -SEG-de | | R
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> Speaker presence: Multiple vs. single speakers may i ;\ - AN '.
cause short-cut learning so not doing well on multi- °Lof o5 % Dol
0-10 dB 10-20 dB 20-30 dB Clean 010.2 0.5 1 2 4
Speaker cases SNR level of evaluation data Segment duration (s)
single multi.
> Those additional artefacts may have distracted the model Train / Eval cond. | Detection, Localization, | Detection, Localization,
decision process, making the model more towards _ 1oNGevat  SEG-deva | 1ONGew ~ SEC—Leva
ying 9 multi. 11.10 17.37 0.60 13.68
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Summary

» We have proposed LENS-DF, a comprehensive data complication pipeline that real-world
challenges in audio deepfake detection

» We acquire state-of-the-art audio Deepfake detectors and benchmark their adaptability
against the more complicated data with more realistic distracting factors

» Training with LENS-DF improves detection performance under such more complicated
conditions, including several factors that often occurs in the real-world data

» Future work will focus on more advanced model and training for temporal localization, and
studying other speaker-related factors such as language

NI



AntiDeepfake (Github) LENS-DF data generation (Github)
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