

Oral #4-3, Poster #2-29

LENS-DF:Deepfake Detection and Temporal Localization for Long-Form Noisy Speech

Xuechen Liu, Wanying Ge, Xin Wang, Junichi Yamagishi @ National Institute of Informatics, Japan

Main Contributions

- We propose a controllable, comprehensive data complication framework that includes several artefacts that reflects real-world, in-the-wild Deepfake audios
- We benchmark the adaptability and robustness of the stateof-the-art self-supervised learning-based audio Deepfake detectors against those realistic variations
- We perform ablation analysis on those artefacts' impact on model robustness and reliability

The Conceptual Novelty

- We are not completely generating "real-world" audio, since the definition is hard and itself unrealistic
- Instead, we include multiple realistic variations/artefacts into the generated audio: longer duration, multiple speakers (mix of Bonafide and spoof), and noises
- The detection is performed per long audio, while the temporal localization is formed here as detection per short segment individually

LENS-DF Data Complication Framework

- Noise augmentation is based on MUSAN, a noise dataset that contains various sound sources
- o Randomized concatenation is done, followed by sequential re-segmentation
- We ignore the offset (last segment length < N seconds) during re-segmentation

Models & Experimental Setup

- Models: MMS-300M and MMS-1B from AntiDeepfake
- Evaluation metric: Equal error rate (EER) & Half-Total error Rate (HTER, threshold tuned by development set)

AntiDeepfake { ~74,000 hours >100 languages } Pre-training Post-training Fine-tuning | We perform this using LENS-DF

Main Results

		Detection , 19LA _{eval}		Detection, longeval		Localization, SEG-4 _{eval}	
SSL Model	Training Data	EER (%)	HTER (%)	EER (%)	HTER (%)	EER (%)	HTER (%)
MMS-1B	19LA _{train}	0.39	1.97	6.40	9.30	22.10	23.04
MMS-300M	$19LA_{train}$	0.15	0.52	2.90	4.05	21.12	21.09
MMS-1B	long _{train}	5.15	4.97	0.90	<u>1.65</u>	19.20	17.86
MMS-300M	long _{train}	7.45	5.32	1.30	1.40	17.81	17.26
MMS-1B	SEG-4 _{train}	4.62	7.98	0.60	4.20	15.14	14.34
MMS-300M	${\sf SEG-4_{train}}$	4.92	4.66	1.00	8.40	14.62	14.08

			Detection , 19LA _{eval}		Detection , long _{eval}		Localization, SEG-4 _{eval}	
SSL Model	Training Data	RawBoost	EER (%)	HTER (%)	EER (%)	HTER (%)	EER (%)	HTER (%)
MMS-300M	19LA _{train}	Yes	0.46	7.80	9.60	14.80	26.32	27.75
	$long_{train}$	Yes	12.06	7.99	0.90	1.90	<u>18.89</u>	<u>18.36</u>
	$SEG-4_{train}$	Yes	8.31	<u>6.92</u>	0.60	<u>3.80</u>	13.68	13.52
	SEG-4 _{train} (Clean)	Yes	6.85	7.68	5.90	12.30	26.66	26.65
	SEG-4 _{train} (Clean)	No	3.26	8.36	8.90	9.75	29.94	31.41
XLS-R-300M	19LA _{train}	Yes	0.19	0.94	15.70	17.60	30.41	27.30

- Acquiring LENS-DF generated data for training substantially improves adaptability on complex data
- Temporal localization remains as a challenging task even with LENS-DF
- RawBoost addition improves the performance of temporal localization, but not much

- Higher noise level in SNR and shorter segments leads to bad performance
- Single speaker cannot generalize on multi-speaker cases
- Those realistic conditions & artefacts may unravel task switching/distraction of the model, which is for future work

AntiDeepfake (Github)

LENS-DF data generation (Github)

