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Main Contributions The Conceptual Novelty

o We propose a controllable, comprehensive data o We are not completely generating “real-world” audio, since
complication framework that includes several artefacts that the definition is hard and itself unrealistic

reflects real-world, in-the-wild Deepfake audios

o Instead, we include multiple realistic variations/artefacts into
o We benchmark the adaptability and robustness of the state- the generated audio: longer duration, multiple speakers (mix
of-the-art self-supervised learning-based audio Deepfake of Bonafide and spoof), and noises

detectors against those realistic variations o | |
o The detection is performed per long audio, while the temporal

o We perform ablation analysis on those artefacts’ impact on localization is formed here as detection per short segment
model robustness and reliability individually

LENS-DF Data Complication Framework
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segment duration: N seconds

o Loudness normalization: ITU P.56

o Noise augmentation is based on MUSAN, a noise dataset that contains various “| e N
sound sources TR
o Randomized concatenation is done, followed by sequential re-segmentation  : |
DD - S0 | 71
o We ignore the offset (last segment length < N seconds) during re-segmentation - ——==EEEm T T 000 j“g W

Models & Experimental Setup

o Models: MMS-300M and MMS-1B from AntiDeepfake

~74.000 hours

>100 languages

[
: We perform this

1 using LENS-DF

o Evaluation metric: Equal error rate (EER) & Half-Total error Pre-training »| Post-training
Rate (HTER, threshold tuned by development set)

Fine-tuning
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o Acquiring LENS-DF generated data for training
substantially improves adaptability on complex data o Higher noise level in SNR and shorter segments leads to
- | | bad performance
o Temporal localization remains as a challenging task even
with LENS-DF o Single speaker cannot generalize on multi-speaker cases
o RawBoost addition improves the performance of temporal o Those realistic conditions & artefacts may unravel task
localization, but not much switching/distraction of the model, which is for future work
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