MIDI-VALLE: Improving Expressive Piano Performance Synthesis Through Neural Codec Language Modelling

Jingjing Tang¹, Xin Wang², Zhe Zhang², Geraint Wiggins¹³, Junichi Yamagishi², György Fazekas¹ ¹Centre for Digital Music, Queen Mary University of London, UK ²National Institute of Informatics, Japan ³Vrije Universiteit Brussel, Belgium

Expressive Performance Synthesis

Objective: Synthesise expressive piano performance audio from performance MIDI.

Challenges

- Generalisation: Difficulty in handling unseen timbres, styles, and acoustic environments.
- **Control**: No fine control over output acoustic characteristics.
- **Integration**: Differences in how EPR (e.g. tokenization; feature encoding) and EPS models (piano-rolls) represent MIDI cause inconsistencies, reducing synthesis quality.

Why VALL-E^[1] for EPS?

- Employs **EnCodec**^[2] to compress and tokenise audio, allowing training on larger, more diverse datasets to improve generalisation
- Token-based discrete modelling aligns symbolic MIDI and audio representations more consistently
- Supports **zero-shot** adaptation by conditioning on short audio prompts, enabling control over acoustical conditions
- Proven effectiveness in **high-fidelity** and expressive text-to-speech synthesis.

Proposed Method

Audio and MIDI Tokenisation

- Audio: we fine-tuned EnCodec from MusicGen^[3] on ATEPP dataset to create Piano-Encodec. It uses residual vector quantisation to produce discrete audio tokens as 4 codebooks.
- MIDI: we uses the Octuple^[4] MIDI representation, encoding each note with features and includes IOI tokens to explicitly model expressive onset timing.

Model Architecture

References

- [1] Chen, Sanyuan, et al. "Neural codec language models are zero-shot text to speech synthesizers." IEEE Transactions on Audio, Speech and Language Processing (2025). [2] Défossez, Alexandre, et al. "High Fidelity Neural Audio Compression." Transactions on Machine Learning Research.(2023)
- [3] Copet, Jade, et al. "Simple and controllable music generation." Advances in Neural Information Processing Systems 36 (2023): 47704-47720 [4] Zhu, Hongyuan, et al. "MusicBERT: A self-supervised learning of music representation." Proceedings of the 29th ACM International Conference on Multimedia. 2021.

Expressive Performance Synthesis (EPS)

Expressive Performance Rendering (EPR)

Scan for Paper

Evaluation and Results

Model	Dataset	FAD ↓	Spec. ↓	Chroma ↓
Encodec [21]	ATEPP	_	$0.304 \pm .005$	$0.478 \pm .011$
	ATEPP	0.685	$0.123 \pm .002$	$0.140 \pm .002$
Piano-Enc.	Maestro	0.984	$0.135 \pm .002$	$0.139 \pm .001$
	Pijama	1.133	$0.143 \pm .003$	$0.137 \pm .001$

Piano-Encodec fine-tuned on ATEPP dramatically reduces spectrogram distortion and chroma distortion compared with Encodec.

Model

- The model generalises well, achieving similarly strong reconstruction quality on Maestro and Pijama despite being trained only on ATEPP.
- MIDI-VALLE outperforms M2A on ATEPP and Maestro, reducing FAD by over 75% and showing closer alignment to reconstructed audio.
- While both models face challenges on Pijama, MIDI-VALLE still achieves lower FAD, suggesting better timbral preservation despite higher harmonic distortions.
- MIDI-VALLE's lower FAD against reconstructions than against ground truth highlights its closer fit to quantised embeddings than to raw performance audio.

		\$ * D	52 — 53 — 5). •)		
ATEPP						
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$		
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$		
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$		
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$		
Maestro						
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$		
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$		
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$		
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$		
Pijama						
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$		
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$		
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$		
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$		

Spec. ↓

Chroma ↓

FAD ↓

Ref.

GT - Ground Truth RC - Reconstruction with Piano-Encoder MV - Generation from MIDI-VALLE

- MIDI-VALLE MIDI-VALLE M2A M2A Wins 30 -10-ATEPP Maestro Pijama M2M VirtuosoNetDExter Synthesis Quality System Compatibility
- Listening tests show MIDI-VALLE is preferred over M2A in synthesis quality for ATEPP and Maestro and in system compatibility overall, though M2A is favoured for jazz in Pijama.

Conclusion

- We presented MIDI-VALLE, an EPS model based on neural codec language modelling, that achieves high-quality, expressive synthesis output.
- Future work will explore generalisation across more musical genres and examine the effects of model size and codebook design, and compare MIDI-VALLE with physical modelling and alternative audio codec approaches.

