MIDI-VALLE: Improving Expressive Piano Performance Synthesis Through Neural Codec Language Modelling

Jingjing Tang¹, Xin Wang², Zhe Zhang², Junichi Yamagishi², Geraint Wiggins¹³, György Fazekas¹

¹Centre for Digital Music, Queen Mary University of London, UK,

²National Institute of Informatics, Japan

³Vrije Universiteit Brussel, Belgium

Expressive Performance Synthesis (EPS)

Expressive Performance Rendering (EPR)

Expressive Performance Rendering (EPR)

Existing Expressive Performance Synthesis (EPS) Models for Piano

- Differentiable Digital Signal Processing (DDSP) models
- Adaptation from conventional Text-to-Speech (TTS) models (Spectrograms + Vocoder)

Existing Expressive Performance Synthesis (EPS) Models for Piano

- Differentiable Digital Signal Processing (DDSP) models
- Adaptation from conventional Text-to-Speech (TTS) models (Spectrograms + Vocoder)

Remaining Challenges

Limited Generalisation: Difficulty in handling unseen timbres, styles, and acoustic environments.

Restricted Control: Current model designs limit fine control over output acoustic characteristics.

Integration Issue in Two-Stage Pipeline: Differences in how EPR (e.g. tokenisation; feature encoding) and EPS models (piano-rolls) represent MIDI cause inconsistencies, leading to loss of precise timing and expressiveness and reducing synthesis quality.

Adapting VALL-E^[1] for EPS

Generalisation: Fine-tune EnCodec^[2] to compress and tokenise piano audio

Integration: Align MIDI and audio representations more consistently

Control: Extend zero-shot adaptation to piano synthesis, allowing control over acoustical conditions

Neural codec language modelling can produce expressive piano audio from MIDI!

^[2] Défossez, Alexandre, et al. "High Fidelity Neural Audio Compression." Transactions on Machine Learning Research.(2023)

^[1] Chen, Sanyuan, et al. "Neural codec language models are zero-shot text to speech synthesizers." IEEE Transactions on Audio, Speech and Language Processing (2025).

Dataset

	ATEPP ^[3] Dataset (>700h, >10k recordings)	Maestro ^[4] Dataset (~200h, ~1k recordings)
Performance Diversity	Multiple pianists, composers, and live settings	Limited to competition recordings
MIDI source	Deep learning-based transcription	High-quality, precise recordings
Acoustic Environment	Varied real-world acoustic environments	Controlled, consistent acoustic settings

[3] H. Zhang, J. Tang, S. R. Rafee, S. Dixon, G. A. Wiggins, and G. Fazekas, "ATEPP: A Dataset of Automatically Transcribed Expressive Piano Performance," in International Society for Music Information Retrieval Conference, Dec. 2022, pp. 446–453. [4] C. Hawthorne, A. Stasyuk, A. Roberts, et al., "Enabling factorized piano music modeling and generation with the MAESTRO dataset," in International Conference on Learning Representations, 2019.

^[6] Zhu, Hongyuan, et al. "MusicBERT: A self-supervised learning of music representation." Proceedings of the 29th ACM International Conference on Multimedia. 2021.

Audio Tokenisation

- Fine-tune EnCodec from MusicGen^[5] on ATEPP dataset to create **Piano-Encodec**.
- Use Residual Vector Quantisation to produce discrete audio tokens as 4 codebooks.

[5] Copet, Jade, et al. "Simple and controllable music generation." Advances in Neural Information Processing Systems 36 (2023): 47704-47720.

[6] Zhu, Hongyuan, et al. "MusicBERT: A self-supervised learning of music representation." Proceedings of the 29th ACM International Conference on Multimedia. 2021.

MIDI Tokenisation

- Use the **Octuple**^[6] MIDI representation, encoding each note with features
- Include Inter-Onset Interval (IOI) tokens to explicitly model expressive onset timing.

III MIDI Tokenisation

- Use the **Octuple**^[6] MIDI representation, encoding each note with features
- Include Inter-Onset Interval (IOI) tokens to explicitly model expressive onset timing.

[5] Copet, Jade, et al. "Simple and controllable music generation." Advances in Neural Information Processing Systems 36 (2023): 47704-47720.

[6] Zhu, Hongyuan, et al. "MusicBERT: A self-supervised learning of music representation." Proceedings of the 29th ACM International Conference on Multimedia. 2021.

Evaluation

Dataset	Genre	MIDI Type	RE*
ATEPP [8]	classical	Transcribed	Live & Studio
Maestro [6]	classical	Recorded	Competition
Pijama [31]	jazz	Transcribed	Live & Studio

RE → **Recording Environments**

Evaluation: Objective Metrics

Fréchet Audio Distance (**FAD**) with Piano-Encodec **Spec**trogram distortion (MAE) **Chroma** distortion (MSE)

Evaluation: Objective Metrics

Fréchet Audio Distance (**FAD**) with Piano-Encodec **Spec**trogram distortion (MAE) **Chroma** distortion (MSE)

Model	Dataset	FAD ↓	Spec. ↓	Chroma ↓
Encodec [21]	ATEPP	_	$0.304 \pm .005$	$0.478 \pm .011$
	ATEPP	0.685	$0.123 \pm .002$	$0.140 \pm .002$
Piano-Enc.	Maestro	0.984	$0.135 \pm .002$	$0.139 \pm .001$
	Pijama	1.133	$0.143 \pm .003$	$0.137 \pm .001$

Model	Ref.	FAD ↓	Spec. ↓	Chroma ↓	
		AT	EPP		
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$	
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$	
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$	
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$	
		Ma	estro		
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$	
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$	
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$	
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$	
Pijama					
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$	
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$	
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$	
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$	

MV refers to MIDI-VALLGT refers to the groudtruth performance recording

Model	Ref.	FAD ↓	Spec. ↓	Chroma ↓		
	ATEPP					
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$		
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$		
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$		
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$		
		Mad	estro			
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$		
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$		
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$		
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$		
Pijama						
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$		
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$		
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$		
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$		

MV refers to MIDI-VALLGT refers to the groudtruth performance recording

Model	Ref.	FAD ↓	Spec. ↓	Chroma ↓		
	ATEPP					
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$		
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$		
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$		
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$		
		Ma	estro			
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$		
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$		
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$		
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$		
	Pijama					
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$		
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$		
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$		
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$		

MV refers to MIDI-VALLGT refers to the groudtruth performance recording

Model	Ref.	FAD ↓	Spec. ↓	Chroma ↓	
		AT	EPP		
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$	
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$	
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$	
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$	
	Maestro				
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$	
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$	
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$	
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$	
Pijama					
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$	
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$	
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$	
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$	

MV refers to MIDI-VALLGT refers to the groudtruth performance recording

Model	Ref.	FAD ↓	Spec. ↓	Chroma ↓		
		AT	EPP			
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$		
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$		
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$		
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$		
		Mad	estro			
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$		
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$		
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$		
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$		
	Pijama					
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$		
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$		
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$		
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$		

MV refers to MIDI-VALLGT refers to the groudtruth performance recording

Model	Ref.	FAD ↓	Spec. ↓	Chroma ↓	
		AT	EPP		
M2A [3]	GT^1	11.014	$0.218 \pm .005$	$0.421 \pm .017$	
	RC^2	11.463	$0.214 \pm .004$	$0.464 \pm .017$	
MV	GT	3.329	$0.219 \pm .005$	$0.436 \pm .012$	
	RC	2.659	$0.199 \pm .005$	$0.442 \pm .012$	
	Maestro				
M2A [3]	GT	34.479	$0.230 \pm .003$	$0.387 \pm .007$	
	RC	33.753	$0.224 \pm .003$	$0.427 \pm .007$	
MV	GT	11.281	$0.231 \pm .004$	$0.428 \pm .009$	
	RC	9.168	$0.206 \pm .003$	$0.420 \pm .009$	
Pijama					
M2A [3]	GT	274.153	$0.312 \pm .010$	$0.471 \pm .009$	
	RC	267.969	$0.293 \pm .008$	$0.509 \pm .010$	
MV	GT	102.022	$0.322 \pm .010$	$0.558 \pm .014$	
	RC	97.634	$0.298 \pm .009$	$0.584 \pm .015$	

MV refers to MIDI-VALL
GT refers to the groudtruth performance recording

Colour → **Frequency** and **Lightness** → **Amplitude**

Colour → **Frequency** and **Lightness** → **Amplitude**

Colour → **Frequency** and **Lightness** → **Amplitude**

Evaluation: Listening Test

Evaluation: Listening Test

Evaluation: Listening Test

Listening Sample

Excerpt from *Mozart: Piano Sonata No. 13 in B-Flat Major, K. 333: I. Allegro* by András Schiff

More Samples

Thank you for listening!

Demo, codes and checkpoints are all available!

MIDI-VALLE: Improving Expressive Piano Performance Synthesis Through Neural Codec Language Modelling

Jingjing Tang, Xin Wang, Zhe Zhang, Junichi Yamagishi, Geraint Wiggins, György Fazekas

